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Abstract--Simultaneous simple shearing and pure shearing, with or without additional volume change, can be 
combined into a single, upper triangular deformation matrix. The off-diagonal term, F, is named the effective 
shear strain, and is a simple function of the pure shearing and simple shearing components. A three-dimensional 
deformation matrix for the simultaneous combination of coaxial deformation, with or without additional volume 
change, and up to three simple shearing systems with mutually orthogonal shear planes is also presented. By 
using this matrix, one can easily extract the various properties of incremental as well as finite strain, and the 
progressive as well as finite rotation of passive markers during deformation. 

The case of transpression-transtension is revised, using the unified deformation matrix. The orientation of the 
major axis of the strain ellipsoid 0q) is always horizontal if the deformation is transtensional, switches from 
horizontal to vertical during transpressional wrenching (1 > W k > 0.81 for constant vorticity deformations), and 
is always vertical for highly transpressional deformations (Wk ~< 0.81). For transpression, material lines initially 
rotate towards the horizontal shearing direction, but generally turn to rotate towards the vertical axis after a 
certain strain. For transtension, all material lines rotate towards a direction in the horizontal plane which is 
oblique to the shearing direction. 

INTRODUCTION 

IT IS simple and useful to think of rock deformation in 
terms of simple shear, pure shear and volume change 
(dilation), and these deformations have frequently been 
applied to explain deformation structures observed in 
rocks. Even under fairly simple conditions, however, 
plane strain deformation is likely to be a combination of 
two or more of these components. For instance, combi- 
nations of a simple shear and volume change are prob- 
ably very common, even in 'perfect' shear zones of 
constant thickness and with undeformed or homogene- 
ously deformed wallrocks (Ramsay & Graham 1970). 
More general shear zones do not obey these constraints, 
and have additional components of pure shear. Hence, 
simple shear, volume change and pure shear are only 
end-members of a wide range of deformation types, and 
each alone can rarely explain the deformation structures 
observed in rocks. The acknowledgment of this fact led 
to a series of fundamental articles in the 1980s which 
treated finite deformation as a combination of simple 
shear, pure shear and/or volume change (Ramsay 1980, 
Coward & Kim 1981, Kligfield et al. 1981, Sanderson 
1982, Coward & Potts 1983, Sanderson & Marchini 
1984). A mathematically convenient order of superposi- 
tion of simple shear, pure shear and/or volume change 
was assumed in these works to model finite strain. The 
order of superposition was chosen without reference to 
the actual geological deformation history, which was not 
considered in most of these articles. 

It is reasonable to assume, and in some cases it can be 
demonstrated (e.g. Passchier & Urai 1988, Wallis 1992), 
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that natural, progressive deformation generally occurs 
by simultaneous pure shearing, simple shearing, and/or 
dilating (progressive volume change). (The -ing suffix 
will be used where it is essential to emphasize the 
kinematic aspect of deformation, as suggested by Means 
1990, and not merely the finite state of deformation.) 
Hence, if deformation history is a concern, an approach 
different from that of discrete strain factorization is 
required. The theory needed is available in a continuum 
mechanics framework (e.g. Malvern 1969), and is ele- 
gantly laid out by Ramberg (1975) in terms of pure 
shearing and simple shearing strain rates. However, 
since many geologists are not very familiar with the 
theory of continuum mechanics, we present a con- 
venient way of combining these three deformation end- 
members into a single, unified deformation matrix in 
terms of simple shearing and pure shearing-dilating 
components. We also extend the discussion to three 
dimensions in which pure shearing becomes three- 
dimensional coaxial deformation, and in which several 
orthogonal sets of simultaneous simple shearing defor- 
mations may occur. The application of this theory to 
structural modelling is finally demonstrated for 
transpressional-transtensional deformation. 

THE DEFORMATION MATRIX 

For homogeneous deformation, the matrix D de- 
scribes a linear transformation relating the undeformed 
vector or point (x) in a Cartesian co-ordinate system to 
its position after deformation (x'): 

x' = Dx (1) 
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(e.g. Flinn 1979). For plane strain this matrix transform- 
ation is equal to the transformation equations 

x] = Dllxl  + D12x2 

X~ = D21X 1 -4- D22x2,  

where Dij are the components of D, and where any 
translation involved is neglected. Knowing the defor- 
mation (gradient) matrix D, the orientation and geom- 
etry of the strain ellipse are easily calculated (see the 
Appendix). The deformation matrices for simple shear 
and pure shear with or without dilation are: 

Dss = ' Dps'~ = k2 ' 

where 7 is the shear strain, and k~ and k 2 are the 
extension-contraction along the Xl and x2 axis, respect- 
ively. By definition (e.g. Ramsay & Huber 1983), k~ = 
1/k 2 for pure shear, hence if klk2 # 1, a volume change is 
involved in addition to the pure shear in the matrix 
Dps,a. A familiar, anisotropic volume change compat- 
ible with both simple shear and pure shear is (e.g. 
Sanderson 1976, Ramsay 1980): 

°1 DA = 1 + A ' (3) 

where A is the volume change. Because the matrices Ops 
and Da are both diagonal, the pure shear and volume 
change can easily be combined into one matrix by simple 
matrix multiplication: 

I)ps,A = DpsD A = D a D p s  

= [0 (1+ 0A)k_l]=[kl k02], (4) 

where 1 + A = det Dps,a = ktk  2. In general, however, 
matrix multiplication is non-commutative, and the sim- 
ultaneous combination of simple shearing and pure 
shearing-dilating into a single, unified matrix is not a 
straightforward problem: 

[1~ kOz][~ ~]#[~ 7]rkl (5) 

The left-hand side of (5) is, mathematically, a simple 
shear deformation followed by pure shear and/or vol- 
ume change, and the right-hand side is a pure shear and/ 
or volume change followed by simple shear. Both the 
deformation path and the finite strain are different for 
the two different orders of deformations, and different 
from simultaneously acting pure shearing and simple 
shearing. 

In geology, the finite strain is commonly known, and 
therefore fixed. Any finite deformation, where only the 
initial and final positions of points or vectors (x) are 
considered, can be factorized in an infinite number of 
ways into two or more deformations, each represented 
by a single deformation matrix. A common factorization 
is decomposition into rotation and stretch (Elliott 1972), 
another is factorization into simple shear, pure shear 

X 2 

1 i ( ................ ;~ 

0' 

~p,'~p, =tan ~=4.33 

a) Pure shearing, then simple shearing 

b 

7,.p =1.08 

'1 
) Simple shearing, then pure shearing 

1 

C 

C 

~ F=l~l tan ~=2.16 

| i | 

'1 7 =k=2 -- k " 
) Simultaneous simple and pure shearing 

Fig. 1. Three ways to arrive at the same finite state of deformation. 
(a) A pure shear is followed by a simple shear. (b) A simple shear is 
followed by a pure shear, and (c) a simultaneous pure shearing and 
simple shearing. Note that the respective shear strains involved have 
been chosen so that the same finite strain is achieved in all cases, 

whereas the pure shear component  is the same (k = 2) in all cases. 

and/or dilation, as discussed in this article (Fig. 1). 
Although any such factorization is, mathematically, a 
sequence of linear transformations (deformations), they 
have been used merely as a way of representing the finite 
strain in a shear zone by two different parameters. 
However, the shear strain on each side of (5) must be 
different for the finite strain to be the same: 

where 7p,s # Ys.p for non-zero shear strain values. 
For (6) to hold true, the relationship between the two 

shear strains must be 

7p,s = (Ts,p)(kx/k2). (7) 

It may be noted that 7p,s = tan (~p) (see Fig. 1), and the 
factorization on the left-hand side of (6) is therefore 
commonly preferred (e.g. Sanderson 1982). 

Any factorization of the deformation matrix can be 
used for treating finite strain (shape and orientation of 
the strain ellipsoid) and finite rotation and change of 
length of material lines (passive markers). However, if 
one is interested in the strain history, a strain factoriza- 
tion has significant implications. For example, an 
initially arbitrarily oriented line will rotate to the exact 
same position and experience the same finite extension 
irrespective of the strain factorization chosen, but the 
strain history of the line (i.e. shortened, then extended, 
etc.) will be different. In fact, together with some 
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simplifying assumptions, this can be utilized to extract 
the vorticity (see below) from deformed rocks, as out- 
lined by Passchier (1990). Since an arbitrary factoriza- 
tion of deformation prevents a realistic modelling of the 
deformation history, and since progressive deformation 
generally involves simultaneous simple shearing and 
pure shearing, a deformation matrix which combines 
simultaneous pure shearing and simple shearing is often 
needed. Such a deformation matrix was derived by 
Ramberg (1975, equation 38) in a continuum mechanics 
framework: 

(x~l = (exp lkx,t) ? exp (~xlt) - exp (-~x't) ] 
2kx, (Xl], ( 8 )  

\x~J exp ( -  kxlt ) \X2J 
where kxl is the rate of pure shearing, i.e. the extension 
rate parallel to the shear direction, ~ is the rate of simple 
shearing and t is time. Using continuum mechanics 
nomenclature (Malvern 1969, Means 1990), kx, = Lll 
and ~ = L12, where Lij are the velocity gradients. 

Although matrix (8) may be used in its present form 
(e.g. Ramberg & Ghosh 1977, Ingles 1983, Kligfield et 
al. 1985), a somewhat simpler, time-independent ver- 
sion of (8) may be derived as indicated by Coward & 
Kim (1981) and Merle (1986): 

k 7(k - k-') 

D =  k -1 = 0 k - t  ' (9) 

where the off-diagonal (rotational) term is a function of 
the pure shearing and simple shearing components, and 
may be termed F (effective shear strain). Here, 7 = L12t, 
and k = Lilt. 

There is a unique orientation and geometry of the 
finite strain ellipse for a certain simultaneous combi- 
nation of simple shearing and pure shearing, as shown in 

Fig. 2. The result of using (9) can be approximated by 
performing a large number of successive pure shear and 
simple shear increments, as shown by Ramberg (1975). 
The numerical value of 7 in (9) is always between those 
of 7p,s and 7s,p, and their relationship is: 

7p,s = kF = k2(ys,p). (10) 

The effect of various simultaneous combinations of 
simple shearing and pure shearing on displacement and 
rotation in the shear direction can be extracted from (9), 
as illustrated in Fig. 3, which also shows the relationship 
between the shear strain (Yp,s) used by Sanderson (1982) 
and the shear strain (Y) for simultaneous simple shearing 
and pure shearing. Hence, if the geometry and orien- 
tation of the strain ellipse (R and 0') can be estimated 
from a shear zone, then 7, 7p,s, 7s,p, F and k can be found 
by using Fig. 2 and/or equation (10). If the angular shear 
strain in the Xa direction OP) can be measured, then 
either 7 or 7p,s can be found from the relationships 

tan v2 = kF = Yp,~ 
or  

(11) 

2Ink  
7 = ~ Yp,s (12) 

Hence, since k is independent of the (see Fig. 1). 
deformation history, finding y from 7p,s or vice versa is 
trivial. 

To account for dilation, the unified deformation 
matrix, D, becomes 

Ik~ Y(kl-k2) 
(k t F ] =  ln(kl/k2) (13) 

D = k2 k2 

For simultaneous simple shearing and dilating per- 
pendicular to the shear zone, the relationship between 
the orientation of the strain ellipse and the shear plane 
(shear zone boundary) is given by Fig. 4. This situation 

I ~o I , -o  e k = &  I ~'= 0.25 

70 - 1.5 

O !  . , = .  
, o  

" " . . . . . .  1 . 5  ~ ~  

0 
~1 J, 5 . . . .  1"0 2"0 30 ,40 gO " " " 100 

R= 1/~'1/~, 2 

Fig. 2. R-O' diagram where 8' is the angle between the shear plane (zone) and the long axis of the finite strain ellipse, and R 
is the strain axis ratio. Yp,s contours (from Sanderson 198")) are shown as thick, grey lines. 
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Fig. 3. Variation in angular shear strain (~) for simultaneous simple shearing and pure shearing. The displacement across 

such a pure shear-simple shear zone = finite vertical distance - tan ~p. 

was treated in detail by Ramsay (1980, equations 17-24) 
for finite strain, who based his discussion on factoriza- 
tion of the finite deformation as simple shear followed by 
volume change (14): 

I00 fOo 1 0 0 1 0 
1 0 1 
0 I + A  0   111° = 0 1 0 • 

0 0 I + A  
(14) 

If one is interested in the deformation history, however, 
the deformation matrix for simultaneous simple shear- 
ing and progressive volume change, which can be de- 
rived from (9) to be 

1 0 In (1+  A) (15) 
0 1 0 ' 
0 0 I + A  

is more useful. As above, there is a difference between 
7s,a in (14) and the 7 in (15). Substituting the relation- 
ship 

A 
7s,A -- In (1 + A) 7 (16) 

into Ramsay's formulas gives the corresponding formu- 
las for simultaneous simple shearing and progressive 
volume change. 

THE THREE-DIMENSIONAL DEFORMATION 
MATRIX 

The discussion above can be extended to three dimen- 
sions, and we will discuss the simultaneous combination 

, 

90 

45 

70 

60 

50 

40 

30 

20 

10 

0'  
1 n v,~1/,~~'='~'% 2 3 4 s 6 7 8 9 10 

Fig. 4. Similar to Fig. 2 but for simultaneous simple shear and volume change. Note that this diagram is different from a 
similar diagram shown by Kligfield et al. (1981, fig. 12) and Ramsay & Huber (1983, p. 50) merely because of the different 

meaning of y in these works. 
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xa 

x~ x2 

2 
Fig. 5. The deformations accounted for in the three-dimensional 

deformation matrix (equation 17). 

of three orthogonal simple shear systems and a three- 
dimensional pure shear with or without additional vol- 
ume change. This general deformation covers a number 
of realistic deformations in the crust, and can be ex- 
pressed by the matrix 

[k~ F12 F13 ] 
D = k 2 1-'23 [ , 

0 k3 J 

where the 

(17) 

k~, k2 and k 3 represent the extensions- 
contractions along the Xl, x2 and x 3 co-ordinate axes 
(includes volume change if kl" k2" k3 ~ 1), and the 
off-diagonal terms (Fq) represent elements of shear 
deformation. If we consider a left-handed co-ordinate 
system, F12 reflects a wrench in the Xl direction, and F13 
and F23 correspond to a thrust in the Xl and x 2 directions, 
respectively (Fig. 5). 

The deformation components involved can be illus- 
trated by their individual deformation matrices: 

0 00] i1 01 0 k2 , 0 1 0 , 
0 0 k3 0 0 1 

pure shear _+ wrench in the 
volume change x~ direction 

(1 o [1o)1 
0 1 0 , 0 1 7 • 
0 0 1 0 0 

thrust in the thrust in the 
Xl direction x2 direction 

(18) 

It can be shown (Tikoff & Fossen in press) that the 
simultaneous combination of these deformations gives 
the deformation matrix (17) with 

F12 - yw(kl - k2) (19a) 
In (kl/k2) 

15z3/5-L 

F13 _ )'Tl(kl -- k3) + 7T27w(k1 -- k2) 
In (kl/k3) In (kl/k2) In (k2/k3) 

+ 7T2)'w(k3 - kl) (19b) 
In (k2/k3) In (ki/k3) 

F23 - )'T2(k2 -- k3) (19c) 
In (k2/k3) 

With (19a)-(19c), matrix (17) contains all the infor- 
mation about the deformation, such as the orientations, 
magnitudes and rotations of the principal directions in 
space. 

The calculation of strain paths in three dimensions is 
similar to their calculation in plane strain, as shown 
above. The deformation matrix (17) above is not re- 
stricted to combinations of thrusting in the xl and x2 
directions and wrenching in the xl direction, in addition 
to the general coaxial strain and/or volume change. 
Switching the orientations of Xl and x2 gives a combi- 
nation of thrusting in the xl and x2 directions and 
wrenching in the x2 direction. Switching xl and x3 
(making x 1 vertical) gives a combination of two vertical 
shears and wrenching in the x2 direction. Making x2 the 
vertical direction gives wrenching and thrusting in the xl 
direction and vertical shear in the x2-x3 plane. Hence, 
the exact deformation matrix for a large variety of 
complex deformations can be found using (17) and 
(19a)-(19c). The restrictions are that the deformation is 
homogeneous, that the coaxial principal deformation 
axes are perpendicular to the shear planes, and that the 
shear planes are mutually orthogonal. 

VORTICITY 

The kinematic vorticity number, Wk (Truesdell 1953), 
is a useful measure of non-coaxiality, particularly in 
cases where it can be extracted from naturally deformed 
rocks (e.g. Passchier 1987, 1990, Passchier & Urai 1988, 
Vissers 1989), and is discussed by Means etal. (1980). Its 
relationship with simultaneous coaxial deformation and 
simple shearing is 

W k = 7{2(In kl) 2 + 2(ln k2) 2 + ),2}-1/2 (20) 

for two dimensions (10), and 

W k ---- {(rT1)  2 -+- ( rW)  2 -{- (~/T2)2} 1/2 

• {2(In kl) 2 + 2(In k2) 2 + 2(In k3) 2 

+ (YT1) 2 + (YT2) 2 + (yW)2} -1/2 (21) 

for three dimensions (17) (for derivation, see Tikoff & 
Fossen in press). Combinations of coaxial deformation 
and simple shearing(s) produce vorticity numbers be- 
tween 0 and 1, where Wk = 0 for pure shearing and Wk = 
1 for simple shearing. 

S T R A I N  P A T H S  

There are an infinite number of strain paths that can 
produce a particular state of finite strain. The simplest is 
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steady flow, which has been assumed in this paper. By 
steady flow, we mean that the incremental strain matrix 
does not change during the deformation history, i.e. the 
principal instantaneous stretching directions and the 
kinematic vorticity number (Wk) stay constant. The 
strain path can then be studied by choosing a fixed strain 
increment and calculating the deformation matrix after 
each increment. For n increments and steady flow defor- 
mation, the incremental deformation matrix for a simul- 
taneous pure shearing, simple shearing and dilating can 
be written in terms of the total pure shear and simple 
shear components as 

ri.crl 
Dinc r = koc,li. 

k2,°,J 
1/n 1/n  l/n ,,-1. (k,,o) ] 

~,'1,o,/ }*tot" ln--~l, Tk ~ [" (22) 
o o ! 

0 (katot) l/n J 

Matrix (22) gives the exact incremental strain for any 
steady flow formed by a simultaneous combination of 
pure shearing and simple shearing. A similar matrix can 
be found for three-dimensional strain by using the re- 
lationships 7incr : (Ytotal)/n, and kincr = (ktotal) (l/n). The 
relationship between the incremental and finite defor- 
mation matrix for stready flow is 

X2 
Fig. 6. Schematic illustration of transpression as a combination of 
simultancous simple shear and pure shear. Based on diagram by 

Sandcrson & Marchini (1984). 

Sanderson & Marchini (1984), in their discussion on 
finite deformations in transpression zones, factorized the 
total deformation matrix into a pure shear and a simple 
shear component: 

D =  0 1 0 0 k 
0 0 1 1 0 k =I 

Otota I =(Dincr) n. (23) 

The orientations, magnitudes and rotations of the prin- 
cipal strains can be calculated precisely at any step (see 
the Appendix), and thus mapped throughout the defor- 
mation. 

Non-steady flow deformation paths can be modeled 
by changing the incremental deformation matrix gradu- 
ally. For example, if the progressive volume change 
demonstrably had a decreasing role during a shearing 
event, the incremental matrix can be changed gradually 
throughout the matrix pre-multiplication process. How- 
ever, it is usually hard to obtain information about the 
flow history of a particular deformation, and steady flow 
may be considered a reasonable 'standard of reference' 
for geological modelling (cf. Passchier 1990). 

APPLICATION TO TRANSPRESSION- 
TRANSTENSION 

= k 0 . (24) 
0 k -1 

Whereas such a factorization is a good choice for finite 
deformations, the progressive deformation involved in 
transpression-transtension zones is easier and more 
accurately modeled by using a simplified version of 
matrix (17): 

1 F 0 [ 1 7(l-k) In (k -t) 0 
D=[[0 k 0 =[ 0 k 0 ' (25) 

0 0 k -1 0 0 k -1 

where k is the horizontal pure shear component in the x2 
direction (perpendicular to the shear plane) and y is the 
shear strain in the xl direction (horizontal). k > 1 and 
7 # 0 gives transtension, whereas k < 1 and y ¢ 0 gives 
transpression. 

Transpression and transtension are two closely re- 
lated types of deformation which, by definition, involve 
the simultaneous combination of simple shearing and 
pure shearing. If we adopt the constraints used by 
Sanderson & Marchini (1984) (free upper horizontal 
surface, fixed lower horizontal surface, no volume 
change), transpression-transtension can mathemat- 
ically be modelled as a combination of a vertical simple 
shear (wrench) in the xl direction and a pure shear in the 
x2-x 3 plane (Fig. 6). The compatibility problem nor- 
mally involved with such deformation is reduced by 
letting the free upper surface represent the surface of the 
Earth. 

Strain geometry 

Any simultaneous combination of the simple shearing 
and pure shearing in the system indicated in Fig. 6 gives 
rise to a unique state of strain. The shape of the strain 
ellipsoid can be illustrated on a contoured, logarithmic 
Flinn diagram (Fig. 7), and it is clear that transtensional 
deformation gives rise to constrictional strain, whereas 
transpressional deformation results in flattening strain. 
This important fact, which was also pointed out by 
Sanderson & Marchini (1984), predicts S(L)-dominated 
fabrics in transpressional shear zones, and L(S)-fabrics 
where the deformation is transtensional. Note, how- 
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k (pure shear) values, using deformation matrix (equation 25) 
(transpression-transtension). Pure shear (k) contours are similar to 
those shown by Sanderson & Marchini (1984, fig. 2), but simple shear 
contours (y) are different because of different definitions of 7 (see 

discussion in text). 

ever, that a similar Flinn diagram presented by Sander- 
son & Marchini is different from Fig. 7 because the shear 
strain used by Sanderson & Marchini (here called Yp,s) is 
different from our 7. 

The three-dimensional orientation of the strain ellipse 
can be mapped for various combinations of pure shear 
and simple shear components (Fig. 8). 22 is vertical for 
wrenching deformations dominated by simple shearing. 
However, for highly transpressional deformation, the ;t~ 
axis is vertical, whereas ).3 is the vertical principal strain 
axis for highly transtensional deformation. For steady 
flow, and Wk ~< 0.81, either ;tl (for transpression) or 23 
(for transtension) is the vertical principal axis through- 
out deformation (Fig. 8). However, for 1 > Wk > 0.81, 

x 

X 2 

90 0 

~o" ~ _~ ~ 
~ ~ I 

80-~. ~ ~  • 1-3o 
. .~ . . . . . . . . . . . . . . . . . .  ~ _ _ _ _ T _ _ [  
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20 - ~ ~ . ,  " ,, 0 l 70 .,.., . ."  ~ I" 

, , ' '  

0 " ' .  , • , , , • , - , • , • , . . . . .  I 90  
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

pure Wk simple 
shear snear 

Fig. 9. Orientationofthemaximuminstantaneousstretchingdirection 
(kl) with varying kinematic vorticity number,  for transpression and 
transtension. At Wk = 0.81, the maximum instantaneous stretching 
direction becomes vertical for transpression, and the orientation of k 2 

is shown as a dashed line where el is vertical. 

22 starts out as the vertical principal strain axis, but 
switches position with 2x (for transpression) or ~-3 (for 
transtension) during deformation according to the con- 
stant vorticity paths in Fig. 8. 

The two principal strain axes in the horizontal plane 
are oblique to the xa and x 2 axes, depending on the 
relative amounts of pure shear and simple shear. The 
angle 0' that the longest of the horizontal principal strain 
axes makes with the Xl (shear) direction is given by the 
equation 

10 

4- 

0- 
0.1 k 0.5 1 2 5 

Transpression ~ Transtension 
10 

Fig. 8. Orientation of the finite strain ellipse for transpression- 
transtension, and deformation paths for constant vorticity defor- 
mations in k--y space. Note the change in the vertical principal strain 
axis for progressive deformations with W k > 0.81. W k = kinematic 

vorticity number,  and W k = 1 indicates the simple shearing path. 

0 ' =  arctan (2h°rma~-k~ r2 - 1- ) . (26) 

A particularly useful piece of information is provided 
by the direction of the instantaneous stretching axes, 
and in particular the angle (ct) between the maximum 
instantaneous stretching direction (el) and the shear 
zone (Fig. 9). If tension gashes are present in the 
transpression-transtension zone, they may be used to 
estimate the vorticity number Wk of the deformation 
(the relative amount of pure shearing and simple shear- 
ing), using the graph shown in Fig. 9. The same graph is 
in some cases also applicable to larger scale features, 
such as extensional faults, dike swarm systems, thrust 
faults and fold axes formed in transpression- 
transtension zones. However, once formed, all such 
features will rotate during further deformation, as dis- 
cussed below. 
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Changes in angles and lengths 

The formulas presented by Sanderson & Marchini 
(1984) must be modified when using matrix (25) for 
either finite or progressive strain considerations by sub- 
stituting for their shear strain (here called Yp,s) with the 
expression: 

_ 7 ( 1  - k )  _ V ( 2 7 )  
7p.s k in k -1 k 

For example, the orientation of the vector or the passive 
line after deformation then is defined by the equation 

cot 9 '  = k-]  cot @ + Fk-  1 

- -k  - t c o t ~ +  y ( 1 - k )  (28) 
k In (k- l )  ' 

where q~ is the initial angle, and qY is the new angle 
between the line and the xt axis. Similarly, the extension 
(quadratic elongation) of a horizontal line is given by the 
equation 

2ho r = (COS q~ + I" sin 9) 2 + k 2 sin e q~. (29) 

Any line in space (not necessarily horizontal) with 
initial direction given by the unit vector l = (a, b, c) 
transforms into the new vector l' where [a] (a+bF] 

l ' =  b' kb 

c' c/k 

(30) 

and the actual quadratic elongation of the line is 

C2 
2 = -~ + b2k 2 + (a + bF) 2. (31) 

The angle a between the line and the Xl axis (shear 
direction) is given by the equation 

a t 

a = arccos . ~ .  (32) 
V A  

The results (Figs. 10 and 11) indicate that horizontal 
material lines will remain horizontal during both trans- 
pressional and transtensional deformation. A horizontal 
line with initial orientation 90 ° to the shearing (xt) 
direction rotates very similarly under simple shearing 
and transpressional deformation. Other horizontal 
lines, however, rotate more slowly towards the xt axis 
with transpression than with simple shearing. Trans- 
tension makes all horizontal lines rotate slower than 
during simple shearing, and the lines rotate towards a 
horizontal, asymptotic line which makes about 24 ° with 
the xa axis when W k = 0.75. This angle is defined by the 
apophysis (cf. Bobyarchick 1986) of the flow which is not 
parallel to the x 1 or x3 axes. This apophysis, which is 
horizontal, is the eigenvector corresponding to the lar- 
gest eigenvalue of the velocity gradient field (e.g. 
Bobyarchick 1986, Tikoff & Fossen in press). The angle 
between this oblique flow apophysis and Xl can be shown 
to be 

arctan ('n"t (33) 
\ 7 /  
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These equations can be used to study the reorientation 
of fold axes and other linear structures that behave as 
passive markers, or nearly so, during transpression- 
transtension. Fold axes that initiate at an angle to the 
shear plane ( x r x  3 plane) will rotate during defor- 
mation. For simple shearing alone, fold axes are well 
known to rotate towards xl with increasing shear strain. 
Using (25), we can now study the behavior of folds in 
transtensional-transpressional regimes. 

Four initial orientations have been chosen as 
examples: 090/00, 135/00, 090/45 and 135/45. The kine- 
matic vorticity number, Wk, has been kept fixed at 0.75 
throughout the deformation. As a measure of the total 
three-dimensional strain, we have used the unit 

x/~_ 
es = -~-  Yo, 

where Y-o is the natural octahedral unit shear (cf. Hos- 
sack 1968). 
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Fig. 10. Change in orientation of passively deforming lines (e.g. fold 
axes) for simple shear wrenching (dashed line) and transtension- 
transpression. In (a) the initial lines are 135/00 and 090/00, and in (b) 
135/45 and 090/45. a = angle between the line and the shear direction 

(xl). See text for discussion. 
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Fig. 11. Stereographic illustration of the progressive rotation of passive line markers for transpression-transtension 
(Wk = 0.75) and simple shearing (wrenching). Arrows indicate the result of simple shear strains of 0.25 combined 
simultaneously with k = 1.1165456 (transpression), k-I = 1.1165456 (transtension), and k = 1 (simple shear) to perform the 
rotations. The lengths of the arrows therefore indicate the rates of rotation in the different fields of the stereograms. The 
total deformation paths of the four lines discussed in Figs. 10(a) & (b) are shown, kl is the largest instantaneous stretching 
direction, and L e is the flow apophysis in the direction defined by the eigenvector corresponding to the largest eigenvalue of 

the velocity gradient tensor L. L e is parallel to x I and x 2 for simple shearing and transpression, respectively. 

This angle, which varies from 90 ° for pure shearing to 0 ° 
for simple shearing, is also the value which the maximum 
horizontal principal strain axis approaches (but never 
reaches) with increasing strain. This implies that for 
transtension, for which strong linear fabrics are 
expected, there is always a considerable angle between 
the stretching lineation and the shear direction (>24 ° for 
W k = 0.75). 

All lines inclined away from the xl-x2 shear plane 
rotate more slowly during transtension-transpression 
than during simple shearing (Fig. 10b). For transten- 
sion, the angle approaches the asymptotic value given by 
(33), whereas for transpression the inclined lines start to 
rotate away from Xl toward the vertical x3 axis at some 
point. This change in rotation direction occurs only in 
transpression when ,t 1 is vertical (Fig. 8), and is due to 
the fact that 21 and 22 are relatively close in magnitude. 
It can be seen from the flow pattern in Fig. 11(c) that this 
effect is largest for initially shallowly plunging lines in 
the first (and third) quadrant(s) of the stereogram. 
These considerations demonstrate  that fold hinges and 
other linear features that behave in a passive manner  can 
never become parallel to the shear direction in trans- 
tensional shear zones, and only if they originated as 
perfectly horizontal lines in transpressional shear zones. 

CONCLUSIONS 

Progressive, as well as finite deformation,  can be 
modelled using a single matrix, given in terms of the 
pure shearing (k) and simple shearing (2) components.  
The strain path can be calculated using the relationships 

7incr = ()'total)/n and kincr = (ktotal) (l/n), where 7 and k 
are, respectively, simple shear and pure shear factors. 
These solutions give identical finite deformations and 
deformation paths to those described by Ramberg ' s  
strain rate- and t ime-dependent  equations, but are 
simpler to use. 

Application of this strain theory shows that trans- 
pressional deformation produces flattening or planar 
fabrics, whereas transtensional deformation results in 
strongly linear and constrictional fabrics. Assuming 
steady flow, any finite state of strain is the result of a 
unique combination of simultaneous pure shearing and 
simple shearing. The orientations of the principal axes of 
the finite strain ellipse depend on the vorticity as well as 
on whether the deformation is highly transpressive, 
transtensive, or simple shear-dominated wrenching. 
Fur thermore,  the characteristic patterns of rotation of 
material lines (e.g. fold axes and lineations) are shown 
to be significantly different for transtension and tran- 
spression. In the former  case the lines rotate towards the 
flow asymptote that is oblique to the Xl axis, and with 
transpression, non-horizontal lines eventually rotate 
towards the vertical (x3) axis (vertical flow asymptote)  
and away from the shear direction. Also, strain histories 
different from steady flow conditions can be modeled 
using gradually changing incremental deformation 
matrices. 
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The deformation matrix for plane strain (10) and three dimensions 
(17 and 19a-19c) has been tested numerically against a computer 
program which gives an approximate solution by successively pre- 
multiplying small increments of pure shear and simple shear(s). The 
solution converged towards the deformation matrix as the size of the 
increments was decreased. The mathematical derivations of these 
matrices are shown in Tikoff & Fossen (in revision). 

The volume change (A) involved in the deformation is simply 
det(D) - 1 × 100%, and is negative for volume decrease and positive 
for volume increase. To find the geometry of the strain ellipsoid from 
the two- or three-dimensional unified deformation matrix, form the 
matrix DD T. The eigenvalues of this matrix (always 2 for 2 × 2 
matrices, and 3 for 3 × 3 matrices for geologically realistic defor- 
mations) are the quadratic principal strain magnitudes, e.g. 21 = (1 + 
el) a, and their corresponding eigenvectors give the directions of the 
principal axes in the deformed state. For two dimensions the eigen- 
values (lengths of the strain ellipse axes) are given by the formula 

r 2 2 = + ~ + k2 + ~ / - 4 ~  + (F 2 + k~l + k~2) 2 (A1) 
2 

and the corresponding eigenvectors can be expressed as 

F -k2r l 
e= ~2+~-2~. (A2) 

For three dimensions the eigenvalues and eigenvectors are more 
easily solved for numerically. The angle 0' between the largest princi- 
pal strain axis and the shear (xx) direction !s 

0' = arccos (ell) (A3) 

where e II is the first component of the normalized eigenvector of D D  T 
corresponding to 21 (the normalized form of a vector v is V/(vTv) 1/2). In 
both two and three dimensions, one can study the change in orien- 
tation of any line from its initial orientation, given by the unit vector ! 
(made up of the direction cosines of the line) to the new direction l' by 
the transformation 

l' = D1. (A4) 

The angle of rotation (~) of this line can be found from the formula 

Fr 
cos ~ - ~//,~r~ (A5) 

and the quadratic extension (2) of the line is simply 

2 = l'T1 '. (A6) 

The angle fl between the largest principal strain axis (e 1) and the line is 

fl = arccos (eTl'). (A7) 

where e 1 is the normalized eigenvector corresponding to the largest 
eigenvalue (21) of DD T. The new vector l' has, in general, a length 
different from unity, but may be normalized to reveal the new 
direction cosines with respect to the x 1, x2 and x 3 co-ordinate axes, 
respectively. 

Similarly, if p is the pole to a plane prior to deformation, the new 
orientation of the plane is given by p',  where 

p' = pO -1. (A8) 

The rotation of p equals the rotation of the plane, and can be found by 
using equation (A5). 


